Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ralf Hänel, ${ }^{\text {a }}$ Henning Hopf ${ }^{\text {a }}$ and Peter G. Jones ${ }^{\text {b }}$

${ }^{\text {a }}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329,
38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Anorganische und Analytische Chemie,
Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.056$
$w R$ factor $=0.148$
Data-to-parameter ratio $=16.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
3,8-Di-tert-butyl-2,2,9,9-tetramethyldeca-3,7-diene

The title compound, $\mathrm{C}_{22} \mathrm{H}_{42}$, displays crystallographic inversion symmetry. The conformation of the central chain is defined by the torsion angle $\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{C}$ of 124.3 (3) ${ }^{\circ}$. The $\mathrm{C}=\mathrm{C}-\mathrm{C}$ angle in the chain is $133.2(2)^{\circ}$. The central $\mathrm{C}-\mathrm{C}$ bond is short at 1.516 (4) \AA.

Comment

During our studies on highly tert-butylated hydrocarbons (Hänel, 1996; Hopf et al., 2001) we investigated the behaviour of the allyl chloride (1) towards various metals and metalorganic reagents. When (1) is reacted with tert-butyl lithium in diethyl ether at 203 K it dimerizes and yields the diene (2). Here we present the structure of (2).

The molecule of (2), which displays crystallographic inversion symmetry, is shown in Fig. 1. Some evidence of steric crowding is provided by short intramolecular $\mathrm{H} \cdots \mathrm{H}$ contacts, such as $\mathrm{H} 1 A \cdots \mathrm{H} 11 C=1.82 \AA, \mathrm{H} 1 A \cdots \mathrm{H} 9 A=1.81 \AA$ and $\mathrm{H} 5 A \cdots \mathrm{H} 7 A=1.85 \AA$; there are no unusually short intermolecular contacts. The conformation of the central chain is largely defined by the $\mathrm{C} 3=\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$ torsion angle (Table 1); the torsion angle around the central bond $\mathrm{C} 5-\mathrm{C} 5{ }^{\mathrm{i}}$ is 180° by symmetry. Molecular dimensions (Table 1) may be regarded as normal, such as the $\mathrm{C} 3=\mathrm{C} 4$ and $\mathrm{C} 4-\mathrm{C} 5$ bond lengths and the $\mathrm{C} 3=\mathrm{C} 4-\mathrm{C} 5$ angle. A similar $\mathrm{C}=\mathrm{C}$ bond length, 1.349 (2) \AA, and $\mathrm{C}=\mathrm{C}-\mathrm{C}$ angle, 131.1 (2) ${ }^{\circ}$, were observed in 1,1,4,4-tetra-tert-butyl-1,3-butadiene [(3); Hopf et al., 1994, 1996). The $\mathrm{C} 5-\mathrm{C}^{\mathrm{i}}$ bond seems rather short at 1.516 (4) \AA; no other tert-butyl-substituted chain of a similar nature is available for comparison. Some caution is indicated in view of problems with the structure of (3), in which contamination by small quantities of an impurity initially led to systematically incorrect dimensions, later corrected (Hopf et al., 1994, 1996).

Experimental

To a solution of (1) ($1.0 \mathrm{~g}, 5.3 \mathrm{mmol}$) in diethyl ether (7 ml) was added over a period of 30 min at 203 K a 1.7 M tert-butyllithium solution (6.3 ml) in diethyl ether. The mixture was stirred for 30 min at room temperature and refluxed for 12 h to complete the

organic papers

dimerization. After work-up, solvent removal and recrystallization (ethanol), (2) ($280 \mathrm{mg}, 34 \%$) was obtained. The spectroscopic data agree with the proposed structure (Hänel, 1996).

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{42}$
$M_{r}=306.56$
Triclinic, $P \overline{1}$
$a=6.350$ (4) \AA
$b=8.161$ (4) \AA
$c=10.655(6) \AA$
$\alpha=87.47$ (4) ${ }^{\circ}$
$\beta=88.08(4)^{\circ}$
$\gamma=67.63(4)^{\circ}$
$V=510.0(5) \AA^{3}$
$Z=1$
$D_{x}=0.998 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.06 \mathrm{~mm}^{-1}$
$T=173(2) \mathrm{K}$
Tablet, colourless
$0.7 \times 0.5 \times 0.2 \mathrm{~mm}$

Data collection

Stoe STADI-4 diffractometer ω / θ scans
Absorption correction: none 2714 measured reflections 1783 independent reflections 1201 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.056$
$w R\left(F^{2}\right)=0.148$
$S=1.08$
1783 reflections
106 parameters H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0574 P)^{2}\right. \\
+0.151 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters $\left({ }^{(},{ }^{\circ}\right)$.

$\mathrm{C} 3-\mathrm{C} 4$	$1.336(3)$	$\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$1.516(4)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.508(3)$		
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$133.2(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$112.0(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$124.3(3)$		

Symmetry code: (i) $-x+1,-y,-z$.

Methyl H atoms were located in difference syntheses, idealized $\left(\mathrm{C}-\mathrm{H}=0.98 \AA\right.$ and $\left.\mathrm{H}-\mathrm{C}-\mathrm{H}=110^{\circ}\right)$ and refined on the basis of

Figure 1
The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
rigid groups allowed to rotate but not tip. Other H atoms were placed in calculated positions $\left(\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ for $s p^{2} \mathrm{CH}$ and $0.99 \AA$ for CH_{2}) and allowed to ride on their parent C atoms. All $U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times $U_{\text {eq }}$ of the parent atom.

Data collection: DIF4 (Stoe \& Cie, 1992); cell refinement: DIF4; data reduction: REDU4 (Stoe \& Cie, 1992); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

We thank Mr A. Weinkauf for technical assistance.

References

Hänel, R. (1996). PhD thesis, Technical University of Braunschweig, Germany.
Hopf, H., Hänel, R., Jones, P. G. \& Bubenitschek, P. (1994). Angew. Chem. Int. Ed. Engl. 33, 1369-1370.
Hopf, H., Hänel, R., Jones, P. G. \& Bubenitschek, P. (1996). Angew. Chem. Int. Ed. Engl. 35, 222.
Hopf, H., Mlynek, C., Klein, D., Traetteberg, M. \& Bakken, P. (2001). Eur. J. Org. Chem. pp. 1385-1391.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1992). DIF4 and REDU4. Stoe \& Cie, Darmstadt, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

